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The parabolic approximation is developed to study the combined refraction/diffrac- 
tion of weakly nonlinear shallow-water waves. Two methods of approach are used. 
In the first method Boussinesq equations are used to derive evolution equations for 
spectral-wave components in a slowly varying two-dimensional domain. The second 
method modifies the K-P equation (Kadomtsev & Petviashvili 1970) to include 
varying depth in two dimensions. Comparisons are made between present numerical 
results, experimental data (Whalin 197 1) and previous numerical calculations 
(Madsen & Warren 1984). 

1. Introduction 
In recent years, recognition of the need for an improvement in the predictive 

capabilities of standard refraction methods (for example, Skovgaard, Jonsson & 
Bertelsen 1975) has led to the development of several techniques for computing wave 
fields modified by the combined effects of refraction and diffraction. Among these 
methods, the parabolic-approximation approach appears to be particularly attractive 
in the study of wave propagation in open coastal regions and small-angle diffraction, 
since its usefulness depends on a nearly unidirectional propagation of waves with little 
backscatter. The method was first developed for monochromatic linear waves by 
Radder (1979) and Lozano & Liu (1980) and has been extended to include effects such 
as frictional dissipation (Dalrymple, Kirby & Hwang 1984) and wavecurrent 
interaction (Booij 1981 ; Liu 1983; Kirby 1984). The linear model has been verified 
with laboratory data (Tsay & Liu 1982) and field data (Liu & Tsay 1984~) .  Liu & 
Tsay (1983) have also developed an iterative numerical scheme to include weak 
reflection. Recently, the formulation has been extended to the case of second-order 
Stokes waves by Yue & Mei (1980), Kirby & Dalrymple (1983) and Liu & Tsay 
(1984 b). 

Whalin (1971) performed a series of laboratory experiments to investigate wave 
focusing behind a topographical lens. Liu & Tsay (1984b), using the parabolic 
equation method, demonstrated that the Stokes second-order theory can describe 
adequately the wave field near the cusped caustics for cases where the Ursell number 

t Present address : Department of Coastal and Oceanographic Engineering, University of 
Florida, Gainesville, FL 3261 1 
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is less than one; wave periods are one and two seconds in Whalin’s experiment. 
However, for cases where the period is three seconds and the Ursell number is greater 
than unity, the assumptions underlying the Stokes theory become invalid. The 
smallness of the water depth compared to wavelength leads to a description of the 
wave field based on the Boussinesq equations. In Whalin’s experiments, it is shown 
that a significant amount of wave energy is transferred from the first-harmonic 
component to the second and third harmonics in the focused zone, due to 
nonlinearity. 

In  this paper, we extend the parabolic-equation method to the case of nonlinear 
waves in shallow water. Two methods of approach are described. First, Boussinesq 
equations are used to derive evolution equations for spectral-wave components in a 
slowly varying, two-dimensional domain. Freilich & Guza (1984) have employed a 
similar approach to study the shoaling of nonlinear waves in one spatial direction. 
Secondly, we describe a similar modelling approach based on a version of the weakly 
two-dimensional Kortewegde Vries equation of Kadomtsev & Petviashvili (1970) 
(hereinafter referred to as the K-P equation). The present approach extends the K-P 
equation to include varying water depth in two dimensions. The resulting systems 
of coupled nonlinear partial differential equations for spectral-wave components from 
the two approaches are quite similar. These equations are written in finite-difference 
form using the Crank-Nicolson method, yielding an initial-boundary-value problem 
for the spatial evolution of each spectral mode. 

Comparisons are made between the predictions of each model and the experimental 
data of Whalin for the three-second case. The agreement between experimental data 
and numerical results is reasonable but not excellent. Both models predict much 
higher first-harmonic amplitudes along the centreline of the tank. The prediction for 
the second- and third-harmonic amplitudes seems to be better. The present model 
is also used to examine the refraction of a cnoidal wave over a plane slope in a 
rectangular channel. Numerical solutions agree very well with previous analytical and 
numerical results. The formation of stem waves along the boundary of the numerical 
wave tank is observed and discussed. 

In  $2 and 3, the model equations based on the Boussinesq equations and the 
parabolic approximation are first derived. The finite-difference forms of the resulting 
equations are also presented in $3. In  $4, we give an alternative approach based on 
the K-P equation. Numerical results for Whalin’s (1971) experiments are given 
in $5. Discussion of the refraction of cnoidal waves is presented in $6. 

2. Nonlinear shallow-water wave equations 
The Boussinesq equations, which include nonlinearity and dispersion to the leading 

order, are used as the basis of the first approach. Using w as the characteristic 
frequency, a, as the characteristic wave amplitude and h, as the characteristic water 
depth, we introduce the following dimensionless variables : 

h = - ,  h‘ u = u ‘ / k ( g h o ) i ] ,  c=c, 
h0 a0 

where C is the free-surface displacement and u represents the depth-averaged 
horizontal velocity vector. The quantities with a prime denote dimensional quantities. 
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If the scale of the water depth is small in comparison with the horizontal lengthscale, 
and the wave amplitude is small compared with the water depth, i.e. 

p 2 = - 4 1 ,  w2ho E = - 4 l ,  a0 (2.2a, b )  
g hl3 

The Boussinesq equations take the following dimensionless forms : 

% + V * [ ( ~ + E ~ ) U ]  at = 0 ( e 2 ,  ep2, p4),  (2.3) 

au 
- + E u * V U + V ~  = p2 +0(e2 ,  €pa, p4), (2.4) 
at 

where two small parameters, B and pa, are assumed to be of the same order of 
magnitude. In the present study we also assume that the variation of water depth 
is small in a characteristic wavelength, i.e. O(lVh1) < O(p2). 

We shall study the propagation of a shallow-water wavetrain which is periodic in 
time with the fundamental frequency w. The solutions can be expressed as a Fourier 
series 

( 2 . 5 ~ )  

(2.5b) 

where (L& u - ~ )  are the complex conjugates of (en, un). Substituting (2.5) into (2.3) 
and (2.4) and collecting the coefficients of different Fourier components, we have 

[(x, y, t )  = aECn(z, y)eint, 
n 

u(x, y, t )  = +Eu, ( z ,  y)e-int, 

n = 0, f1, f 2 ,  ..., 

n = 0, fl, f 2 ,  ..., 
n 

(2.6) 

(2.7) 

E 
- i n 5 , + V * ( h u n ) + ~ Z V ' ( ~ 8 u n - 8 )  = 0(e2, €pa, p4), 

--nu + 1 --h Vcn+-Z ( U ~ * U ~ - ~ )  = 0(c2 ,  ep2, p4), 

8 

E 

n (  ' y )  4 8  

where s = 0, f 1, f 2, . . . . From these two equations we can find the following simple 
relationships : 

(2.8) u, = --VYn[l +O(E, p2)1, 

V ' U ,  = (2.9) - [l +o(€,p2)] ,  

1 

n 

h 

for n =+ 0, and 
8 

UQ = -- 2 h ~ & ~ - 8 + O ( ~ 2 , p 4 , ~ ~ 2 ) ,  8 (2.10) 

(2.11) 
E 

5 = - - - - ~ , U , - U - , + O ( E ~ ,  p4, B p 2 ) .  
O 4 8  

For the case where water depth is a constant, h = 1 ,  (2.6) and (2.7) reduce to those 
derived by Rogers & Mei (1978). 

Using (2.8) and (2.9) in (2.6) and (2.7) and combining the resulting equations, we 
obtain 

V * [ ( h - F ) V c n ] + n 2 c n  = Z(n2-s2)&cn;n-8-h Z 

8 9 n  (2.12) 

7 P L Y  163 
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which constitutes a system of nonlinear equations for 5, (n = 1 , 2 ,  3, . ..). Since (2.12) 
is a differential equation of the elliptic type, appropriate boundary conditions must 
be assigned along the boundaries. Once C;, (n = 1,  2, . . .) are found, (2.8) can be used to 
calculate the velocity vector u,. The mean free-surface set-up or set-down C,, is 
obtained from (2.1 1 ) . 

3. Parabolic approximation 
We now consider the cases where the dominating wave propagation is known to 

be in the x-direction. The free-surface displacement for the nth harmonic can be 

(3.1) 
where $,(x, y) denotes the amplitude function which takes both refraction and 
diffraction effects into account. Substitution of (3.1) into (2.12) yields 

s i n  

In principle (3.2) can be solved as a system of boundary-value problems for $,,. 
The amplitude function $n is primarily a function of the water depth due to wave 

shoaling. Therefore, $n varies slowly in the direction of wave propagation at the same 
rate as that of h in the x-direction. Thus, 

The diffraction effects are considered important. Hence 

Using (3.4), we can simplify (3.2) significantly: 

(3.4a, b )  

(3.4c) 
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More importantly, we have converted a set of elliptic equations (3.2) into a set of 
parabolic equations (3.5) which may be solved with efficient numerical techniques. 
For later use, we can rewrite (3.5) in a dimensional form 

where 

is the dimensional form of (3.3) and 

(3.7) 

is the wavenumber associated with a reference constant water depth hi. The model 
equation (3.5) provides a means for calculating the evolution of either a single 
wavetrain containing a fundamental frequency and its harmonics, aa in the subsequent 
examples, or of a broad spectrum of waves, where the fundamental frequency is taken 
to be the lowest mode in the spectrum. The current results thus extend the analysis 
of Freilich & Gum (1984) to two horizontal dimensions, and allow for the modelling 
of wavetrains with a small but non-trivial directional spreading about the principal 
propagation direction. 

The Crank-Nicolson method is used to rewrite the governing differential equations 
(3.5) in a finite-difference form. The forward-difference scheme is employed in the 
x-direction, which is a time-like variable, and a centred-difference scheme is used in 
the y-direction. Denoting $:,, as the nth harmonic function at x (= m Ax) and y 
(=jAy),  we can write (3.5) in the following form: 

where @$:,j = $:,j+1-2$:.j+$?,j-19 (3.10) 

(3.11) 

The right-hand side of (3.9) is nonlinear in terms of $.“+l. We linearize the nonlinear 
terms by adopting an iterative procedure as follows : 

w:, 5 = $; j+1- $:, j-1. 

($zp)k ($:-3k+1, if s < 0, n--8 > 0, 
($rp)k+i ($:?;,)k, (3.12) 

7-2 
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where the superscripts k +  1 and k denote the current and previous iterations 
respectively. The initial guesses, k = 0, are obtained from the previous x-level 
solutions, i.e. ($::l)O = $FVr.  The iteration procedure is stopped and converged 
solutions are obtained when the relative error between two successive iteration 
solutions is less than a predetermined small number S i.e. 

(3.13) 

In  our present calculations, the value of 6 is chosen as 

4. An alternative approach based on the K-P equation 
The application of the parabolic approximation to the more general Boussinesq 

equations involves an implied restriction to the case of waves with a unidirectional 
propagation direction and small transverse modulation. In this connection, i t  is of 
some interest to examine model equations with time dependence incorporated which 
embody the same basic assumption. For the case of shallow water and constant depth, 
an equation of this form has been developed by Kadomtsev & Petviashvili (1970). 
The K-P equation may be written (following Bryant 1982) as 

The connection to the parabolic approximation may be seen by considering only O( 1) 
terms and making the substitution 

6 = $(x, y) ei(x-t), 

yielding (after assuming O(a2$/ax2) Q O(a$/ax)) 

.all. a2$ 

ax a y 2  
21-+- = 0, (4.3) 

which is the parabolic approximation of the Helmholtz equation (Yue & Mei 1980). 
The K-P equation, which extends the Kortewegae Vries equation to include weak 
transverse modulation, thus contains the same degree of information as the parabolic 
approximation. 

Based on this correspondence, we may construct a version of the K-P equation 
for variable depth. Retaining dimensional quantities, the resulting model equation 
may be written as 

where C‘ = (gh’):. Neglecting y derivatives, the equation reduces to the form given 
by Johnson (1972) after non-dimensionalization. Retaining only lowest-order terms, 
making the substitution 

6 = P(.-J, yf) ei(jk‘dx’-wt’) , o=C’k’, (4.5a, b) 

and referencing the phase function to a constant value ki (following Kirby & 
Dalrymple 1983) leads to the parabolic approximation 
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which is simply the shallow-water limit of the linear approximation, 

2ik'C'C'--;+2k'C'Ci(ki-k')$'+i-,(k'C'Ci)$'+ a$' a 
g ax ax 

obtained by Kirby & Dalrymple (1983). In (4.7) Ci  = ao/ak' is the group velocity. 

dispersive term a3gl/ax'3 by the following substitution : 
Before substituting a series expansion for c', i t  is advantageous to alter the 

yielding the modified equation 

which has the same dispersion relation as (2.3) and (2.4). The parabolic approximation 
is obtained in similar fashion to the procedure of 982 and 3; we proceed using the 
slightly revised form 

(4.9) 

to manipulate (4.8) initially, after which a shift to a reference depth is employed (as 
in (4.6)) to obtain 

where (4.11) 

and where On and ki  are given in (3.7) and (3.8) respectively. The difference in the 
coefficients of $; in (3.6) and (4.10) is accounted for by the fact that the substitution 
(4.1 1 ) is used throughout the entire process to obtain (3.6) rather than the intermediate 
form (4.9). 

Comparing (4.10) with the corresponding equation (3.6), derivedfrom trhe Boussinesq 
equation, we observe that the basic characteristics of these equations are the same. 
We note, however, that in the approach using the K-P equation the nonlinearity is 
localized due to the original form of the equation (no y-derivatives) in nonlinear terms, 
and that the retention of only the lowest-order depth dependence in the y-derivative 
term implies a possible error in energy-flux conservation for wave shoaling over a 
general two-dimensional topography. It seems from (3.6) and (4.10) that this effect 
could be alleviated by making the substitution a(an a@k/ay')/ay' for the given term. 
Several numerical experiments using the revised term have indiccted that this is not 
a significant effect in present computations. 

The parabolic equation (4.10) can be solved numerically in similar fashion as that 
presented in the previous section for (3.5). Only slight changes in the coefficients and 
the right-hand side of (3.9) are required. The details are not repeated here. 
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FIGURE 1. Topographical lens in Whalin’s (1971) wave-tank experiments. 

Incident-wave 
Wave period amplitude 

T ( 5 )  a0 (cm) E = a,/h, pe = d h J g  

3.0 0.68 0.98 1.46 0.0446 0.0643 0.0958 0.0682 

TABLE 1. Experimental and numerical parameters 

5. Wave focusing by a topographical lens 
Whalin (1971) conducted a series of laboratory experiments concerning wave 

convergence over a bottom topography that acts as a focusing lens. The wave tank 
used in the experiments has the horizontal dimensions 25.603 m x 6.096 m. In the 
middle portion of the wave tank, 7.62 m < x’ < 15.24 m, eleven semicircular steps 
were evenly spaced and led to  the shallower portion of the channel (figure 1). The 
equations approximating the topography are given as follows (Whalin, 1971) : 

0.4572 (0 < X‘ < 10.67-G(~’)), 

(18.29-G < X’ < 21.34), 
h ’ ( ~ ’ ,  y’) = 0.4572+&(10.67-G-~’), (10.67-G < X‘ < 18.29-G), (5.1) 

0.1524 

G(y’) = [y’(6.096-yy’)]: (0 < y‘ < 6.096). (5.2) 

[ 
where 

I n  both (5.1) and (5.2) the length variables are measured in metres. The bottom 
topography is symmetric with respect to the centreline of the wave tank, 
y’ = 3.048 m. 

A wavemaker was installed a t  the deeper portion of the channel where the water 
depth hi is 0.4572 m. Three sets of experiments were conducted by generating waves 
with periods T = 1, 2, and 3 s. Different wave amplitudes were generated for each 
wave period. For the cases of T = 1 and 2 s, a second-order Stokes-wave theory has 
been shown to describe the combined refraction4iffraction mechanisms adequately 
(Liu & Tsay 1984b). The focusing of water waves by refraction led to  a focal region, 
in which energy was transferred to  the second harmonic. For the experimental set 
with T = 3 s, the Ursell parameter U,  = (a /h ) / (kh)2  is generally greater than unity 
in the shallower-water region, which indicates that  the Stokes-wave theory is no 
longer valid and the present shallow-water wave theory should be used. In  table 1, 
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FIQURE 2. Wave amplitudes along the centreline of the wave tank for a, = 0.68 om, E = 0.0446, 
and pg = 0.0682. Numerical results (experimental data): - (OOO), first harmonic; --- 
(a a), second harmonic; --- (A A A), third harmonic; . . . . . . . , fourth harmonic; -. .-, 
fifth harmonic ; and - - - -, mean free surface. 

we summarize the experimental data and the corresponding small parameters E and 
pa. The water depth in the shallower region, hi = 0.1524 m, has been used as the 
water-depth scale. 

According to the Whalin's report, the second- and the third-harmonic waves grow 
rapidly in the focal zone. In  fact, the amplitude of the higher harmonics becomes 
larger than that of the first haraonic (see figures 2 , 3  and 4). To study this problem, 
we obtain numerical solutions by using both approaches (3.5) and (4.10). In  numerical 
computations for each model, three harmonics (N = 3) and five harmonics (N = 5) 
are considered. 

Owing to the symmetry of the problem with respect to the centreline of the wave 
tank, only one half of the wave tank is discretized. The computational domain starts 
from the wavemaker, x ' = O ,  and ends at x'= 25m. The no-flux boundary con- 
ditions are used along the side-wall and the centreline of the wave tank, i.e. 

* = 0, along y' = 0 and 3.048 m, (5.3) 
aY' 
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0 5 10 15 20 25 

x (m) 
FIQURE 3. Wave amplitudes along the centreline of the wave tank for a, = 0.98 cm, E = 0.0643, 

and pa = 0.0682; see figure 2 caption for symbols. 

0 5 10 15 20 25 

x (m) 

FIQURE 4. Wave amplitudes along the centreline of the wave tank for a, = 1.46 cm, E = 0.0958, 
and pug = 0.0682; see figure 2 caption for symbols. 

for all n. The wave amplitude for the first-harmonic waves a t  the wavemaker (x’ = 0) 
is prescribed with the values shown in table 1 .  The initial conditions for higher- 
harmonic waves are zero. 

I n  numerical computations different grid sizes are tested for the convergence of 
the numerical scheme. Numerical solutions presented here are obtained by using 
Ax’ = 0.25 m and Ay’ = 0.3048 m, although no noticeable differences are observed 
when the grid sizes are doubled. Less than five iterations are necessary to  satisfy the 
convergency condition (3.13) at each x’. 

I n  figure 2, numerical results based on the Boussinesq equations approach (3.5) 
for the case with E = 0.0446, p2 = 0.0682 and a,, = 0.0068 m are presented with 
experimental data. Wave amplitudes along the centreline of the wave tank are 
plotted ; figure 2 (a) contains three harmonics and figure 2 (b) represents numerical 
results with five harmonics. Since i t  is assumed that only the first-harmonic waves 
are generated a t  the wavemaker, the wave energy in the higher-harmonic components 
are sufficiently small over the constant-depth region (0 < z’ < 8 m). However, as 
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FIGURE 5. Comparison between two numerical solutions : -, the modified K-P model (4.10) ; and 
____ , Boussinesq model (3.5); (a)  a, = 0.68 cm, pa = 0.0682, and E = 0.0446, (a) a, = 0.98 cm, 
pa = 0.0682, and E = 0.0446, and (c) a, = 1.46 cm, pa = 0.0682, and E = 0.0958. 
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waves start to refract over the topography and focus along the centreline of the tank, 
a significant amount of energy is transferred into higher-harmonic components. The 
agreement between laboratory data and numerical solutions is reasonable. The 
numerical model overestimates the fist-harmonic amplitudes. The second- and 
third-harmonic wave amplitudes are in good agreement with reported data. Keeping 
more harmonic components in the analysis seems to reduce the amplitudes in the first 
two harmonics slightly and increase the third-harmonic amplitudes. The agreement 
between laboratory data and numerical results is improved if more higher-harmonic 
components are included. 

The difference in results for low-harmonic amplitudes apparent in figure 2 indicates 
the importance of retaining sufficient harmonics to obtain convergence of the low- 
mode solutions. For this reason the choice N = 5 was retained for the remainder of 
the calculations in this section. (Several experiments with higher values of N indicated 
only minor changes for modes 1-3). Results for the cases a, = 0.0098 m (e = 0.0643, 
p2 = 0.0682) and a, = 0.0146 m (e = 0.0958, p2 = 0.0682) are shown in figures 3 
and 4 respectively. Again, the model uniformly overpredicts fist-harmonic amplitude 
along the channel centreline, although the amplitude of the second-harmonic is 
well predicted in both cases. The third-harmonic amplitude is also well predicted in 
figure 3. This high-amplitude case of figure 4 indicates a tendency for the numerical 
result to undergo the start of a recurrence behaviour before the experimental 
maximum of Q is obtained. 

Numerical results for the three cases presented above were also obtained using the 
K-P model (4.10) with N = 5.  To compare these two models, numerical solutions for 
the first three harmonics are shown in figure ~ ( u - c ) .  For the low-amplitude case 
a, = 0.68 cm (figure 5a) ,  the results from the K-P model show an underprediction 
of second- and third-harmonic amplitudes in comparison to the Boussinesq.? For the 
higher-amplitude cases (figure 5 b and c), nonlinearity becomes relatively more 
important and results of the two models are in closer agreement, with the exception 
that harmonic amplitudes grow somewhat more slowly in the K-P model. Both 
models are seen to be capable of predicting the essential features of harmonic 
generation in the focusing of a nonlinear wave. We note that the results of each model 
are sensitive to the choice of initial conditions, so that more detailed comparisons 
than those obtained here are not possible in the absence of detailed data in the vicinity 
of the wavemaker (z < 8 m). 

The discrepancy between theory and experiment in the amplitude of the first 
harmonic could be partially caused by frictional dissipation on the waves. Whalin 
(1971) reported that there is a very small amount of wave damping (roughly 3 %) 
owing to the viscous boundary layers along the sidewalls and the bottom of the wave 
tank; in our numerical computations viscous damping has been ignored. The other 
contributing factor to the disagreement is that the evolution process described by 
the experiment occurs in the space of about two first-harmonic wavelengths, 
indicating that the theoretical limitation to slowly varying amplitudes is not truly 
satisfied. On the other hand, reasonable agreement between theory and experiment 
also suggests that the assumption concerning slowly varying amplitudes is not 
restrictive in practice. 

t This discrepancy appears to be the results of slightly different frequency dispersion effects at 
Ogle) between the two models. 
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6. Refraction of waves over a plane slope 
The results in the preceding section have demonstrated successfully the present 

models’ ability to predict the transfer of energy to  harmonic components during 
the process of nonlinear focusing. However, measured and predicted amplitudes of 
the fundamental component were markedly different along the channel centreline, 
indicating either erroneous predictions by the model or some inconsistency in 
Whalin’s reported data. For this reason, it was desirable to compare the present 
models’ results with some case for which analytic results are available. Such a case has 
been provided by Skovgaard & Peterson (1977), who used the properties of a very 
slowly varying train of cnoidal waves to develop a theory for the refraction and 
shoaling of obliquely incident waves on a plane beach. This situation has also been 
studied recently by Madsen & Warren (1984), who obtained a numerical solution for 
the case of waves propagating in a rectangular channel containing a plane slope 
oriented at an angle of 26.6’ to the channel sidewalls. Madsen & Warren used a 
time-dependent, finite-difference solution of a set of conservation laws equivalent to 
(2.3) and (2.4) to obtain their numerical results. Here, we use the parameters chosen 
by Madsen & Warren and study the same channel configuration; however, we neglect 
the lateral boundary damping employed by Madsen & Warren in order to study the 
details of the reflection process at the vertical, impermeable sidewalls. The 
computational domain is given by 0 < x’ < 2154.5 m, 0 < y’ < 1534.5 m, with waves 
normally incident at x = 0. Slope-oriented coordinates are given by 

(6.1) 1 Z = (z’-420) c0~(26.6~)-((~’-775)  sin (26.6’), 

V = Id-420) sin(26.6’)+ (y’-775) cos (26.6’), 

[ 7 m, 5 > 1076.9 m. 

with water depth @en by 
21 m, X < O ,  

h’(X, ij) = (21 -0.013 5) m, 0 < X < 1076.9 m, (6.2) 

Wave parameters for the problem are given by : 

T = 17.3 s = wave period; 

H = 1.74 m = wave height at 21 m depth; 

which gives a deep-water wavelength Lo = 467.1 m and an Ursell number 
U, = (H/2h’)/(k’h’)2 = 0.13 in the deep-water portion of the channel. Initial con- 
ditions for the calculation are thus specified according to a third-order Stokes wave at 
x = 0. A total of N = 6 components are retained, and the computational domain is 
divided into a rectangular grid with either Ad = Ay‘ = 15.5 m or Ax’ = Ay‘ = 10.0 m. 
The larger grid spacing is used to be consistent with that used by Madsen & Warren 
(Ad = Ay’ = 15.5 m). The smaller grid spacing is used to eliminate plotting errors 
when reproducing the narrow wave crests. Wave heights calculated using the larger 
grid spacing agree in detail with previous numerical computations. 

A plot of the model topography is given in figure 6 along with a photograph of 
the instantaneous water-surface elevation, with contour increments of 1 m for bottom 
topography and 0.4 m for surface elevation. As the wave shoals, refraction effects are 
apparent in the centre of the channel, and the wave develops from nearly sinusoidal 
form to shallow-water profiles with narrow crests and broad troughs. The formulation 
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Y’ (m) 
FIQURE 6. Bottom topography and contours of instantaneous surface elevation at t = 0; ----, 
bottom contours in increments of 1 m, 7 m < h < 21 m; -, contours of free-surface elevation 
in increments of 0.4 m. 

of a ‘Mach stem’ is apparent on the fifth boundary, where refraction turns the 
incident wave towards the wall, inducing a grazing-incidence reflection as in the study 
of Yue & Mei (1980). Some high-frequency modulation along the wave crests appears 
due to the combined effect of plotter error and numerical discretization; this 
modulation is significant for the choice Ax’ = Ay‘ = 15.5 m but disappears rapidly 
with decreasing grid spacing. 

A plot of normalized wave height H / h  versus normalized water depth h/L, for 
y’ = 750 m is given in figure 7 in comparison with the refraction model of Skovgaard 
& Peterson (1977) and the time-dependent numerical results of Madsen & Warren 
(1984). These results were obtained using Ax’ = by’ = 15.5 m, in agreement with 
Madsen & Warren’s calculations. The evolution of H / h  is seen to be quite smooth up 
to the shallower depths, with the plotted points (corresponding to every fifth 
computational point) agreeing quite well with the refraction theory. In the shallow 
portion of the tank, some modulation of the local wave height is present, possibly 
due to interaction with the lateral boundaries. Wave height H was obtained by 
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FIQURE 7. Normalized waveheight H / h  as a function of h/L, : -, refraction results of Skovgaard 
& Peterson (1977) ; A A r\, numerical results of Madsen & Warren (1984) ; . . . , present numerical 
results. Error bar 0 at h/L, = 0.015 indicates range of H values in shallow part of tank due to 
short-wave modulation. 
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FIQURE 8. Free-surface profiles for cnoidal wave refraction: (a) along y = 750 m, near the 
centreline of channel and (b)  along y = 0 m, sidewall and through 'Mach-stem' region. 
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stepping the individual components through time to construct r ( x ‘ ,  y’, t ‘ )  and then 
taking H(x’,  y’) to correspond to (Lax - [kin, a crest-to-trough measure. 

Refracted angles of incidence between the wave and slope also agreed quite well 
with the refraction model and are not shown. 

Plots of the water-surface profile along the line y’ = 750 m and through the ‘Mach- 
stem’ region y’ = 0 m are shown in figure 7(a and b). In  both cases, the results show 
the presence of separate peaks in the wave troughs. This effect was also noted in the 
results of Madsen & Warren and was attributed by them to the effect of truncation 
errors, although no physical evidence exists to exclude their possible physical 
existence. The rapid evolution of a nearly uniform wavetrain is evident in the 
‘Mach-stem ’ region in figure 6. We note that, due to the narrowness of the wave crests, 
displacement of these crests away from actual computational grid points may 
contribute significantly to the modulation of crest elevations (Lax which is apparent 
in the plotted results. 

7. Concluding remarks 
The present study has, demonstrated that the parabolic equation method may be 

applied successfully to the modelling of weakly nonlinear, weakly dispersive wave 
motions governed by the Boussinesq equations. The present study has been confined 
to the investigation of the propagation of monochromatic waves together with their 
nonlinearly generated harmonics. However, given the necessary computer capacity, 
the method is directly applicable to the problem of modelling two-dimensional 
spectral evolution in shallow water. 

In this study we have neglected the effects of frictional dissipation and wave 
breaking ; the models in their present form are thus applicable to the region seaward 
of the sur f  zone. The inclusion of wave-breaking effects in the models may be expected 
to be a non-trivial extension of the present results, since the models do not directly 
calculate the total wave height at each computational point. 

The model developed here could be used for modelling an entire spectrum of wave 
motion, thus extending the work of Freilich 6 Guza (1984) to two horizontal 
dimensions. Computer times required are likely to be large but may be manageable 
on standard computers for simulations involving less than one hundred spectral 
components, using a revised form of iteration for the nonlinear terms, which 
decouples the Crank-Nicolson step for each equation. 

This research was carried out with the support of New York Sea Grant Institute 
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